Про_двигатели
Двигатели внутреннего сгорания
Для тех, кто пока, как и я, только заинтересовался двигателями внутреннего сгорания. Для тех, кто находится в начале пути...
Дви́гатель вну́треннего сгора́ния (ДВС) - двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя. ДВС преобразует тепловую энергию от сгорания топлива в механическую работу.
Классификация ДВС по типу используемого топлива
Бензиновые


Бензиновые карбюраторные

Смесь топлива с воздухом готовится в карбюраторе, далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи. Основная характерная особенность топливо-воздушной смеси в этом случае - однородность.

Бензиновые инжекторные

Также, существует способ смесеобразования путём впрыска бензина во впускной коллектор или непосредственно в цилиндр при помощи распыляющих форсунок (инжектор). Существуют системы одноточечного, и распределённого впрыска различных механических и электронных систем. В механических системах впрыска дозация топлива осуществляется плунжерно-рычажным механизмом с возможностью электронной корректировки состава смеси. В электронных системах смесеобразование осуществляется с помощью электронного блока управления (ЭБУ), управляющего электрическими бензиновыми форсунками.

Дизельные, с воспламенением от сжатия

Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания. В разогретый в цилиндре воздух от адиабатического сжатия (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива. В процессе впрыскивания топливной смеси происходит его распыление, а затем вокруг отдельных капель топливной смеси возникают очаги сгорания, по мере впрыскивания топливная смесь сгорает в виде факела. Так как дизельные двигатели не подвержены явлению детонации, характерному для двигателей с принудительным воспламенением, в них допустимо использование более высоких степеней сжатия (до 26), что, в сочетании с длительным горением, обеспечивающим постоянное давление рабочего тела, благотворно сказывается на КПД данного типа двигателей, который может превышать 50 % в случае с крупными судовыми двигателями.

Дизельные двигатели являются менее быстроходными и характеризуются большим крутящим моментом на валу. Также некоторые крупные дизельные двигатели приспособлены для работы на тяжёлых топливах, например, мазутах. Запуск крупных дизельных двигателей осуществляется, как правило, за счёт пневматической схемы с запасом сжатого воздуха, либо от присоединённого электрического генератора, который при запуске выполняет роль стартера.

Вопреки расхожему мнению, современные двигатели, традиционно называемые дизельными, работают не по циклу Дизеля, а по циклу Тринклера- Сабатэ со смешанным подводом теплоты.

Недостатки дизельных двигателей обусловлены особенностями рабочего цикла — более высокой механической напряжённостью, требующей повышенной прочности конструкции и, как следствие, увеличения её габаритов, веса и увеличения стоимости за счёт усложнённой конструкции и использования более дорогих материалов. Также дизельные двигатели за счет неоднородного сгорания характеризуются неизбежными выбросами сажи и повышенным содержанием оксидов азота в выхлопных газах.

Газовые двигатели

Двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях:

  • смеси сжиженных газов — хранятся в баллоне под давлением насыщенных паров (до 16 атм). Испарённая в испарителе жидкая фаза или паровая фаза смеси ступенчато теряет давление в газовом редукторе до близкого атмосферному, и всасывается двигателем во впускной коллектор через воздушно-газовый смеситель или впрыскивается во впускной коллектор посредством электрических форсунок. Зажигание осуществляется при помощи искры, проскакивающей между электродами свечи.
  • сжатые природные газы - хранятся в баллоне под давлением 150 -200 атмосфер. Устройство систем питания аналогично системам питания сжиженным газом, отличие - отсутствие испарителя.
  • генераторный газ - газ, полученный превращением твёрдого топлива в газообразное. В качестве твёрдого топлива используются:
    • уголь
    • торф
    • древесина
Газодизельные

Основная порция топлива приготавливается, как в одной из разновидностей газовых двигателей, но зажигается не электрической свечой, а запальной порцией дизтоплива, впрыскиваемого в цилиндр аналогично дизельному двигателю.

Роторно-поршневой

Схема цикла двигателя Ванкеля: впуск (intake), сжатие (compression), рабочий ход (ignition), выпуск (exhaust); A - треугольный ротор (поршень), B - вал.

Предложен изобретателем Ванкелем в начале XX века. Основа двигателя - треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя. Такая конструкция позволяет осуществить любой четырёхтактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. За один оборот двигатель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя. Строился серийно фирмой НСУ в Германии , ВАЗом в СССР , Маздой в Японии. При своей принципиальной простоте имеет ряд существенных конструктивных сложностей, делающих его широкое внедрение весьма затруднительным. Основные трудности связаны с созданием долговечных работоспособных уплотнений между ротором и камерой и с построением системы смазки.

    Комбинированный двигатель внутреннего сгорания

    Комбинированный двигатель внутреннего сгорания представляет собой комбинацию из поршневой и лопаточной машин (турбина, компрессор), в котором обе машины в соотносимой мере участвуют в осуществлении рабочего процесса. Примером комбинированного ДВС служит поршневой двигатель с газотурбинным наддувом (турбонаддув).

    По принципам устройства различают
    Поршневой
    • Поршнево́й дви́гатель — двигатель внутреннего сгорания, в котором тепловая энергия расширяющихся газов, образовавшаяся в результате сгорания топлива в замкнутом объёме, преобразуется в механическую работу поступательного движения поршня за счёт расширения рабочего тела (газообразных продуктов сгорания топлива) в цилиндре, в который вставлен поршень. Поступательное движение поршня преобразуется во вращение коленчатого вала кривошипно-шатунным механизмом. Поршневой двигатель внутреннего сгорания сегодня является самым распространённым тепловым двигателем. Он используется для привода средств наземного, воздушного и водного транспорта, боевой, сельскохозяйственной и строительной техники, электрогенераторов, компрессоров, водяных насосов, помп, моторизованного инструмента (бензорезок , газонокосилок, бензопил) и прочих машин, как мобильных, так и стационарных, и производится в мире ежегодно в количестве нескольких десятков миллионов изделий. Мощность поршневых двигателей внутреннего сгорания колеблется в пределах от нескольких ватт (двигатели авиа-, мото- и судомоделей) до 75 000 кВт (судовые двигатели). В качестве топлива в поршневых двигателях внутреннего сгорания используются:
      • жидкости — бензин, дизельное топливо, спирты, биодизель;
      • газы — сжиженный газ, природный газ, водород, газообразные продукты крекинга нефти, биогаз;
      • монооксид углерода, вырабатываемый в газогенераторе, входящем в состав топливной системы двигателя, из твёрдого топлива (угля, торфа, древесины).
      Полный цикл работы двигателя складывается из последовательности тактов — однонаправленных поступательных ходов поршня. Различают двухтактные и четырёхтактные двигатели. Число цилиндров в разных поршневых двигателях колеблется от 1 до 56 (звездообразные М504, М507, М510, М511, М517,...). Объём цилиндра — это произведение площади поперечного сечения цилиндра на ход поршня. Суммарный объём всех цилиндров обычно называют рабочим объёмом двигателя. По способу смесеобразования делятся:
      • Двигатели с внешним смесеобразованием. Воздушно-топливная смесь готовится в карбюраторе, поступает по впускным коллекторам (патрубкам) в цилиндры двигателя, как вариант — инжекторная система подачи топлива. Воспламенение топливо-воздушной смеси выполнется, как правило, электроискровым разрядом, вырабатываемым системой зажигания (например, автомобильный Бензиновый двигатель внутреннего сгорания). Двигатели с внешним смесеобразованием могут работать на газообразном топливе (природный газ, сжиженные углеводородные газы, биогаз, генераторный газ, см. газогенераторный автомобиль, газовый двигатель);
        • Компрессионные карбюраторные двигатели. В них топливо подается вместе с воздухом (как в бензиновых двигателях), обычно в основе топлива — диэтиловый эфир, касторовое масло и керосин). Воспламенение происходит от сжатия. Степень сжатия регулируется контрпоршнем, так как от этого зависит момент воспламенения смеси. Компрессионные двигатели используются главным образом в авиа- и автомоделях. Компрессионные карбюраторные двигатели не являются дизельными двигателями.
        • Калильные карбюраторные двигатели. Схожи по принципу действия с компрессионными, но имеют калильную свечу, накал которой поддерживается за счёт теплоты сгорания топлива на предыдущем такте. Такие двигатели также требуют особого состава топлива (обычно в его основе — метанол, касторовое масло и нитрометан). Используются главным образом в авиа- и автомоделях;
      • Двигатели с внутренним смесеобразованием. Эти двигатели, в свою очередь, подразделяются на:
        • Дизельные, работающие на дизельном топливе. В этих двигателях сжатию подвергается только воздух в цилиндрах, вблизи верхней мёртвой точки при такте сжатия в камеру сгорания форсункой впрыскивается дизельное топливо, которое воспламеняется при контакте с воздухом, нагретым от сжатия до температуры в несколько сотен градусов Цельсия.
        • Воспламенение от горячих частей двигателя (калоризаторные), обычно — днища поршня или калильной головки. Приводные двигатели прокатных станов (топливо-мартеновский газ), в первой половине XX века применялись в сельском хозяйстве.
      Двигатели с внутренним смесеобразованием имеют (как в теории, так и на практике) более высокий КПД и вращающий момент за счёт более высокой степени сжатия.
      • Существуют также газодизельные двигатели, работающие на смеси природного газа с воздухом. Так как температура воспламенения от сжатия газовоздушной смеси составляет около 700 °C (дизельное топливо воспламеняется при 320—380 °C), воспламенение производится впрыскиванием через форсунки небольшого количества дизельного топлива.
      В рамках технической термодинамики работа поршневых двигателей внутреннего сгорания в зависимости от особенностей их циклограмм описывается термодинамическими циклами Отто, Дизеля, Тринклера, Аткинсона или Миллера. Эффективный КПД поршневого ДВС не превышает 60 %. Остальная тепловая энергия распределяется, в основном, между теплом выхлопных газов и нагревом конструкции двигателя. Поскольку последняя доля весьма существенна, поршневые ДВС нуждаются в системе интенсивного охлаждения. Различают системы охлаждения:
      • воздушные, отдающие избыточное тепло окружающему воздуху через ребристую внешнюю поверхность цилиндров; используются в двигателях сравнительно небольшой мощности (до 310 л.с. в Татра-815), или в более мощных авиационных двигателях, работающих в быстром потоке воздуха;
      • жидкостные, в которых охлаждающая жидкость (вода, масло или антифриз) прокачивается через рубашку охлаждения (каналы, созданные в стенках блока цилиндров), и затем поступает в радиатор охлаждения, в котором теплоноситель охлаждается потоком воздуха, созданным вентилятором.

        Роторный двигатель - наименование семейства близких по конструкции тепловых двигателей, объединённых ведущим признаком - типом движения главного рабочего элемента. Роторный двигатель внутреннего сгорания (ДВС) - тепловой двигатель, в котором главный подвижный рабочий элемент двигателя - ротор - совершает вращательное движение. Двигатели должны давать на выходе вращательное движение главного вала. Именно этим роторные ДВС отличаются от наиболее распространенных сегодня поршневых ДВС, в которых главный подвижный рабочий элемент (поршень) совершает возвратно-поступательные движения. В роторных моторах, где главный рабочий элемент и так вращается, не требуется дополнительных механизмов для получения вращательного движения. В поршневых же моторах приходится применять громоздкие и сложные кривошипно-шатунные механизмы для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала.


        Ро́торно-поршнево́й дви́гатель (РПД, РПДВС, двигатель Ва́нкеля) — роторный двигатель внутреннего сгорания, конструкция которого разработана в 1957 году инженером компании NSU Вальтером Фройде. Ему же принадлежала идея этой конструкции. Двигатель разрабатывался в соавторстве с Феликсом Ванкелем, работавшим над другой конструкцией роторно-поршневого двигателя. Особенность двигателя — применение трёхгранного ротора (поршня), имеющего вид треугольника Рёло, вращающегося внутри цилиндра специального профиля, поверхность которого выполнена по эп-поршневой двигатель Установленный на валу ротор жёстко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестернёй — статором. Диаметр ротора намного превышает диаметр статора, несмотря на это ротор с зубчатым колесом обкатывается вокруг шестерни. Каждая из вершин трёхгранного ротора совершает движение по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре с помощью трёх радиальных уплотнений. Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами. Отсутствие механизма газораспределения делает двигатель значительно проще четырехтактного поршневого, а отсутствие сопряжения (картерное пространство, коленвал и шатуны) между отдельными рабочими камерами обеспечивают необычайную компактность и высокую удельную мощность. За один оборот эксцентрикового вала двигатель выполняет один рабочий цикл, что эквивалентно работе двухцилиндрового поршневого двигателя. За один оборот ротора эксцентриковый вал выполняет 3 оборота и 9 рабочих ходов, что приводит к ошибочным сравнениям роторного двигателя с шестицилиндровым поршневым двигателем. Смесеобразование, зажигание, смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания. Практическое применение получили двигатели с трёхгранными роторами, с отношением радиусов шестерни и зубчатого колеса: R:r = 2:3, которые устанавливают на автомобилях, лодках и т. п. Автомобили с РПД потребляют от 7 до 20 литров топлива на 100 км, в зависимости от режима движения, масла — от 0,4 л до 1 л на 1000 км.
      • Рабочий цикл

        Двигатель Ванкеля использует четырехтактный цикл:
        • такт A: Топливно-воздушная смесь через впускное окно поступает в камеру двигателя
        • такт B: Ротор вращается и сжимает смесь, смесь воспламеняется электрической искрой
        • такт C: Продукты горения давят на поверхность ротора, передавая усилия на цилиндрический эксцентрик
        • такт D: Вращающийся ротор вытесняет отработанные газы в выпускное окно
        Преимущества и недостатки


      • Преимущества перед поршневыми двигателями:
        • низкий уровень вибраций: двигатель полностью механически уравновешен, что позволяет повысить комфортность лёгких транспортных средств типа микроавтомобилей, мотокаров и юникаров;
        • высокие динамические характеристики: на низкой передаче возможно без излишней нагрузки на двигатель разогнать машину выше 100 км/ч на более высоких оборотах двигателя (8000 об/мин и более);
        • высокая удельная мощность (л. с./кг) в силу того, что:
        • масса движущихся частей в РПД гораздо меньше, чем в аналогичных по мощности поршневых двигателях, так как в его конструкции отсутствуют коленчатый вал и шатуны;
        • однороторный двигатель выдаёт мощность в течение трёх четвертей каждого оборота выходного вала. В отличие от четырёхтактного поршневого двигателя, который выдаёт мощность только в течение одной четверти каждого оборота выходного вала (современный серийный РПД с объёмом рабочей камеры 1300 см³ имеет мощность 220 л. с., а с турбокомпрессором — 350 л. с.);
        • меньшие в 1,5—2 раза габаритные размеры;
        • меньшее число деталей (два-три десятка вместо нескольких сотен).
        За счёт отсутствия преобразования возвратно-поступательного движения во вращательное двигатель Ванкеля способен выдерживать гораздо большие обороты по сравнению с традиционными двигателями. Роторно-поршневые двигатели обладают более высокой мощностью при небольшом объёме камеры сгорания, сама же конструкция двигателя сравнительно мала и содержит меньше деталей. Небольшие размеры улучшают управляемость, облегчают оптимальное расположение трансмиссии (развесовка) и позволяют сделать автомобиль более просторным для водителя и пассажиров.
      • Недостатки:
        • Соединение ротора с выходным валом через эксцентриковый механизм, являясь характерной особенностью РПД, вызывает давление между трущимися поверхностями, что в сочетании с высокой температурой приводит к дополнительному износу и нагреву двигателя. В связи с этим возникает повышенное требование к периодической замене масла. При правильной эксплуатации периодически производится капитальный ремонт, включающий в себя замену уплотнителей. Ресурс при правильной эксплуатации достаточно велик, но не заменённое вовремя масло неизбежно приводит к необратимым последствиям, и двигатель выходит из строя.
        • Состояние уплотнителей. Площадь пятна контакта очень невелика, а перепад давления очень высокий. Следствием износа уплотнителей являются высокие утечки между камерами и, как следствие, падение КПД и токсичность выхлопа. Проблема быстрого износа уплотнителей на высокой скорости вращения вала была решена применением высоколегированной стали.
        • Склонность к перегреву. Камера сгорания имеет линзовидную форму, то есть при маленьком объёме у неё относительно большая площадь. При температуре горения рабочей смеси основные потери энергии идут через излучение, интенсивность которого пропорциональна четвёртой степени температуры; с точки зрения снижения удельной поверхности и за счёт этого потерь теплоты идеальная форма камеры сгорания — сферическая. Лучистая энергия не только бесполезно покидает камеру сгорания, но и приводит к перегреву рабочего цилиндра.
        • Меньшая экономичность на низких оборотах по сравнению с поршневыми ДВС. Устраняется отключением работы каждого n-го поршня, что также влечёт снижение температурной нагрузки.
        • Высокие требования к геометрической точности изготовления деталей двигателя делают его сложным в производстве — требуется применение высокотехнологичного и высокоточного оборудования: станков, способных перемещать инструмент по сложной траектории эпитрохоидальной поверхности камеры объёмного вытеснения.
      • Газотурбинный двигатель (ГТД) — это воздушный двигатель, в котором воздух сжимается нагнетателем перед сжиганием в нём топлива, а нагнетатель приводится газовой турбиной, использующей энергию нагретых таким образом газов. Двигатель внутреннего сгорания с термодинамическим циклом Брайтона. То есть сжатый воздух из компрессора поступает в камеру сгорания, куда подаётся топливо, которое, сгорая, образует газообразные продукты с большей энергией. Затем в газовой турбине часть энергии продуктов сгорания преобразуется во вращение турбины, которая расходуется на сжатие воздуха в компрессоре. Остальная часть энергии может передаваться на приводимый агрегат или использоваться для создания реактивной тяги. Эта часть работы двигателя считается полезной. Газотурбинные двигатели имеют большую удельную мощность до 6 кВт/кг. В качестве топлива используется разнообразное горючее. Например: бензин, керосин, дизельное топливо, мазут, природный газ, судовое топливо, водяной газ, спирт и измельчённый уголь.


      История создания
      В 1807 году французско-швейцарский изобретатель Франсуа Исаак де Риваз построил первый поршневой двигатель, называемый часто двигателем де Риваза. Двигатель работал на газообразном водороде, имея элементы конструкции, с тех пор вошедшие в последующие прототипы ДВС: поршневую группу и искровое зажигание. Кривошипно-шатунного механизма в конструкции двигателя ещё не было.

      Газовый двигатель Ленуара 1860 года
      Первый практически пригодный двухтактный газовый ДВС был сконструирован французским механиком Этьеном Ленуаром в 1860 году. Мощность составляла 8,8 кВт (11,97 л. с.). Двигатель представлял собой одноцилиндровую горизонтальную машину двойного действия, работавшую на смеси воздуха и светильного газа с электрическим искровым зажиганием от постороннего источника. В конструкции двигателя появился кривошипно-шатунный механизм. КПД двигателя не превышал 4,65 %. Несмотря на недостатки, двигатель Ленуара получил некоторое распространение. Использовался как лодочный двигатель.

      Познакомившись с двигателем Ленуара, осенью 1860 года выдающийся немецкий конструктор Николаус Аугуст Отто с братом построили копию газового двигателя Ленуара и в январе 1861 года подали заявку на патент на двигатель с жидким топливом на основе газового двигателя Ленуара в Министерство коммерции Пруссии, но заявка была отклонена. В 1863 году создал двухтактный атмосферный двигатель внутреннего сгорания. Двигатель имел вертикальное расположение цилиндра, зажигание открытым пламенем и КПД до 15 %. Вытеснил двигатель Ленуара.

      Четырёхтактный двигатель Отто 1876 года
      В 1876 году Николаус Август Отто построил более совершенный четырёхтактный газовый двигатель внутреннего сгорания.

      В 1884 году Огнеслав Степанович Костович в России построил первый бензиновый карбюраторный двигатель. Двигатель Костовича был оппозитным, с горизонтальным размещением направленных встречно цилиндров. В нём впервые в мире было применено электрическое зажигание. Он был 4-тактным, 8-цилиндровым, с водяным охлаждением. Мощность двигателя составляла 80 л. с. при массе двигателя 240 кг, что существенно превышало показатели двигателя Г. Даймлера, созданного годом позже. Однако, заявку на свой двигатель Костович подал только 14 мая 1888 г, а патент получил в 1892 г., т.е. позже, чем Г. Даймлер и В. Майбах, разрабатывавшие карбюраторный двигатель параллельно и независимо от О. Костовича.

      Мотоцикл Даймлера с ДВС 1885 года
      В 1885 году немецкие инженеры Готтлиб Даймлер и Вильгельм Майбах разработали лёгкий бензиновый карбюраторный двигатель. Даймлер и Майбах использовали его для создания первого мотоцикла в 1885, а в 1886 году — на первом автомобиле.

      Немецкий инженер Рудольф Дизель стремился повысить эффективность двигателя внутреннего сгорания и в 1897 предложил двигатель с воспламенением от сжатия. На заводе «Людвиг Нобель» Эммануила Людвиговича Нобеля в Петербурге в 1898—1899 Густав Васильевич Тринклер усовершенствовал этот двигатель, использовав бескомпрессорное распыливание топлива, что позволило применить в качестве топлива нефть. В результате бескомпрессорный двигатель внутреннего сгорания высокого сжатия с самовоспламенением стал наиболее экономичным стационарным тепловым двигателем. В 1899 на заводе «Людвиг Нобель» построили первый дизель в России и развернули массовое производство дизелей. Этот первый дизель имел мощность 20 л. с., один цилиндр диаметром 260 мм, ход поршня 410 мм и частоту вращения 180 об/мин. В Европе дизельный двигатель, усовершенствованный Густавом Васильевичем Тринклером, получил название «русский дизель» или «Тринклер-мотор». На всемирной выставке в Париже в 1900 двигатель Дизеля получил главный приз. В 1902 Коломенский завод купил у Эммануила Людвиговича Нобеля лицензию на производство дизелей и вскоре наладил массовое производство.

      В 1908 году главный инженер Коломенского завода Р. Корейбо патентует во Франции двухтактный дизель с противоположно-движущимися поршнями и двумя коленвалами. Дизели Корейво стали широко использоваться на теплоходах Коломенского завода. Выпускались они и на заводах Нобелей.

      В 1896 году Чарльз В. Харт и Чарльз Парр разработали двухцилиндровый бензиновый двигатель. В 1903 году их фирма построила 15 тракторов. Их шеститонный #3 является старейшим трактором с двигателем внутреннего сгорания в Соединенных Штатах и хранится в Смитсоновском Национальном музее американской истории в Вашингтоне, округ Колумбия. Бензиновый двухцилиндровый двигатель имел совершенно ненадёжную систему зажигания и мощность 30 л. с. на холостом ходу и 18 л. с. под нагрузкой.

      Дэн Элбон с его прототипом сельскохозяйственного трактора Ivel
      Первым практически пригодным трактором с двигателем внутреннего сгорания был американский трёхколёсный трактор lvel Дэна Элбона 1902 года. Было построено около 500 таких лёгких и мощных машин.

      Двигатель, использованный братьями Райт в 1910 году
      В 1903 году состоялся полёт первого самолёта братьев Орвила и Уилбура Райт. Двигатель самолёта изготовил механик Чарли Тэйлор. Основные части двигателя сделали из алюминия. Двигатель Райт-Тэйлора был примитивным вариантом бензинового инжекторного двигателя.

      На первом в мире теплоходе — нефтеналивной барже «Вандал», построенной в 1903 году в России на Сормовском заводе для «Товарищества Братьев Нобель», были установлены три четырёхтактных двигателя Дизеля мощностью по 120 л. с. каждый. В 1904 году был построен теплоход «Сармат».

      В 1924 по проекту Якова Модестовича Гаккеля на Балтийском судостроительном заводе в Ленинграде был создан тепловоз ЮЭ2 (ЩЭЛ1).

      Практически одновременно в Германии по заказу СССР был по проекту профессора Ю. В. Ломоносова и по личному указанию Ленина в 1924 году на заводе Эсслинген (бывш. Кесслер) близ Штутгарта построен тепловоз Ээл2 (первоначально Юэ001).
      Перспективы
      Эра двигателей внутреннего сгорания (ДВС) еще далека от заката — такого мнения придерживается достаточно большое количество и специалистов, и простых автолюбителей. И для такого утверждения у них есть все основания. По большому счету, существует только две серьезных претензии к ДВС — прожорливость и вредный выхлоп. Запасы нефти не безграничны, а автомобили являются одними из основных ее потребителей. Выхлопные газы отравляют природу и людей и, накапливаясь в атмосфере, создают парниковый эффект. Парниковый эффект приводит к изменению климата и далее к другим экологическим бедам. Но не будем отвлекаться.С обоими недостатками конструкторы и инженеры за последние десятилетия научились весьма эффективно бороться, доказав, что у ДВС есть еще неиспользованные резервы для развития и совершенствования.

      Суммируя сказанное можно утверждать, что в ближайшие десятилетия мы будем сосуществовать с двигателями внутреннего сгорания. Для этого есть весомые технические и экономические причины. Отлаженность технологии производства ДВС обеспечивает их сравнительно низкую стоимость. Совершенствование рабочего процесса позволило получить высокие характеристики и снизить вредные выбросы.

      Рост продаж «зеленых» автомобилей во многом стимулирован правительственной поддержкой. Как только государство свертывает программу скидок на экологичные автомобили, спрос на них стремительно падает.

      Многочисленные попытки создать достойную альтернативу ДВС пока не увенчались успехом. Если же даже принципиально новый двигатель вскоре появится, то для его внедрения в серийное производство понадобятся громадные капиталовложения и длительный промежуток времени.

      This site was made on Tilda — a website builder that helps to create a website without any code
      Create a website